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Abstract:Adaptive algorithms of spline-wavelet decomposition in a linear space over metrized field are proposed.
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1 Introduction
Many studies have been devoted to the investigation
of numerical flows (signals). There is the theory of
filtration, the theory of classical wavelets, the theory
of spline-wavelets (see, for example, monographs [1]
– [3] and bibliography there). There exist many im-
plementations of wavelets in different practical inves-
tigations (for instance, see [4] – [6]).

For classical wavelet decomposition (see [2] -
[18]) the translation invariance of the spaces, the
multiple-scale analysis, and Fourier transformer are
required; that creates great difficulties for the con-
struction of adaptive algorithms for processing nu-
merical flows. Adaptive spline-wavelet expansions
use approximate relations for constructing nested
spline spaces on non-uniform grids (see [19] – [21]).

In papers [19] - [20], algorithms of adaptive
spline-wavelet decomposition for numerical flows are
proposed. The construction of spline-wavelet de-
compositions of flow of a more general nature than
real numerical flow (i.e. flow of elements of lin-
ear normed space, flow of matrices or flow of p-
adic numbers), encounters difficulties in implement-
ing relevant generalizations of splines. We overcome
these difficulties by a special construction: according
to properties of spline-wavelet decomposition (see
[19]) the construction of the main flow reduces to the
trace operation over initial flow on the enlargement
of the initial grid. Thus, for obtaining the adaptive
main flow of spline-wavelet decomposition it is suf-
ficient to construct adaptive approximation of the ini-
tial flow.

In this paper we propose algorithms for the con-
struction of the main flow in adaptive spline-wavelet
decomposition for flows of the elements of a linear
normed space. Under condition of the same approx-

imation we consider the ratio of the volume of the
main flow mentioned above to the volume of the main
flow obtained with pseudo-equidistance grid. The
limit characteristics are discussed in the case of the
flow generated by differentiable function.

2 Some auxiliary assertions
Here we introduce some notation used in the follow-
ing.

2.1 Adaptive grid
Let (α, β) be an interval of real axisIR1, let Ξ be a
grid with rationalξ ∈ (α, β), i ∈ Z,

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . , (1)

lim
i→−∞

ξi = α, lim
i→+∞

ξi = β.

If d ∈ Ξ thend = ξi for i ∈ Z; denoted− = ξi−1

andd+ = ξi+1.
Let us discussa, b ∈ Ξ, a+ < b−, a = ξ0, b =

ξM

A set ]a, b[ = {ξs | s = 0, 1, . . . , M} is called
the grid segment. LetC ]a, b[ be the linear finite-
dimensional space of functionsu(t) defined fort ∈
]a, b[ and‖u‖C ]a,b[ = maxt∈ ]a,b[ |u(t)|.

Let f be a function defined onΞ and such that

f(t) ≥ c ∀t ∈ ]a, b[ , c = const > 0. (2)

By definition, put

ε∗ = max
ξ∈ ]a,b[

max
t∈{ξ,ξ+}

f(t)(ξ+ − ξ), (3)

ε∗∗ = (b− a)‖f‖C ]a,b[ . (4)
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Lemma 1 If ε ∈ (ε∗, ε∗∗) and conditions (2) – (4)
are fulfilled, then there exists the unique natural inte-
gerK = K(f, ε, Ξ) and the gridX̃ ⊂ ]a, b[ ,

X̃ = X̃(f, ε,Ξ) :

a = x̃0 < x̃1 < . . . < x̃K ≤ x̃K+1 = b (5)

such that

max
t∈ ]x̃s, x̃s+1 [

f(t)(x̃s+1 − x̃s) ≤ ε <

< max
t∈ ]x̃s, x̃+

s+1 [
f(t)(x̃+

s+1 − x̃s) (6)

∀s ∈ {0, 1, . . . ,K − 1},
max

t∈ ]x̃K , b [
f(t)(b− x̃K) ≤ ε, X̃ ⊂ Ξ. (7)

The proof of Lemma 1 is given by mathemati-
cal induction as to parameters; the induction is the
source of the algorithm for the construction of grid
(5) with properties (6) – (7) (see [19], see also an
illustrative example);the grid is calledthe adaptive
grid.

Summation of relations (6) leads to inequality

K−1∑

s=0

max
t∈ ]x̃s, x̃s+1 [

f(t)(x̃s+1 − x̃s) ≤ Kε <

<
K−1∑

s=0

max
t∈ ]x̃s, x̃+

s+1 [
f(t)(x̃+

s+1 − x̃s). (8)

2.2 Pseudo-equidistant grid
By definition, put

ε∗ = max
ξ∈ ]a,b− [

(ξ+ − ξ)‖f‖C ]a,b [. (9)

Under the condition of

ε ∈ (ε∗, ε∗∗) (10)

wefind values1

N = N(f, ε, Ξ) = bε∗∗/εc − 1, (11)

and

h = h(f, ε,Ξ) =
b− a

N + 1
. (12)

Ongrid segment]a, b [ we discuss a set

X = X(f, ε,Ξ) :

a = x0 < x1 < . . . < xN = b, X ⊂ Ξ, (13)

1For valuer the epressionbrc is integer numberk with prop-
erty0 ≤ r − k < 1.

where
xs+1 − xs ≤ h < x+

s+1 − xs, (14)

s ∈ {0, 1, . . . , N − 1}.
In the next we add a knotxN+1 ∈ Ξ to the grid X,
wherexN+1 > xN and

xN+1 − xN ≤ h. (15)

Therefore

(b− a)‖f‖C ]a,b [ − 2ε < Nε ≤
≤ (b− a)‖f‖C ]a,b [ − ε. (16)

Using (2.2), we getb−a
N+1‖f‖C ]a,b [ < ε; thus by (12),

follows inequalityh‖f‖C ]a,b [ < ε. Taking into ac-
count the right side of inequality (2.14) and inequal-
ity (15), we obtain

max
t∈ ]xs, xs+1 [

f(t) (xs+1 − xs) ≤ ε,

s ∈ {0, 1, . . . , N}. (17)

Grid (13) with properties (14) – (15) is named
pseudo-equidistant grid with mesh widthh (see [19]).
Taking into account (4), (9) – (11), we have the fol-
lowing assertion

Lemma 2 If ε ∈ (ε∗, ε∗∗), thengrid (13) with prop-
erties (14) – (15) exists.

2.3 Relative quantity of knots
Let’s suppose that functionf(t) is continuous on seg-
ment[a, b], and

f(t) ≥ c > 0 ∀t ∈ [a, b]. (18)

Consider the sequence of gridsΞ(λ),

Ξ(λ) : . . . < ξ−1(λ) < ξ0(λ) < ξ1(λ) < . . . , (19)

depending on parameterλ > 0 such thata, b ∈ Ξ(λ).
By definition, put

]a, b [λ= Ξ(λ) ∩ [a, b], hλ = max
ξ∈ ]a,b− [

(ξ+ − ξ).

Theorem 3 If functionf(t) is continuous and sat-
isfies condition (18), and the sequence of grids (19)
such that

lim
λ→+0

hλ = 0, (20)

then the relation

lim
ε→+0

lim
λ→+0

N

K
=

‖f‖C[a,b]

1
b−a

∫ b
a f(t)dt

is true.
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3 Approximation of flow

Let F be a metrized field2; the appropriate metric is
denoted by| · | and it has the following properties: a)
|f | ≥ 0 ∀f ∈ F , and|f | = 0 ⇐⇒ f = 0, b) the
relations|f + g| ≤ |f |+ |g| and c)|fg| = |f ||g| are
right ∀f, g ∈ F .

Consider linear normed spaceM over fieldF ;
let ‖ · ‖ be a norm in the space.

Denote by CM ]a, b [ the linear finite-
dimensional space of abstract functionsU(t),
t ∈ ]a, b [, with values of the functions3 in spaceM.
Let

‖U‖CM ]a,b [ = max
t∈ ]a,b [

‖U(t)‖

be a norm in spaceCM ]a, b [. The elementU(t)
of spaceCM ]a, b [ is called thegeneral flow. Later
we need to use abstract functions defined on segment
[c, d] of the real axis such that their range of values
is situated inM; for them the differentiation is in-
troduced in the usual way. Therefore we also discuss
the linear spacesCM[c, d], C1

M[c, d] of continuous
and of continuously differentiated abstract functions
accordingly.

Let U(t) be a function defined on grid (1). By
definition, put

DΞU(ξ) =
U(ξ+)− U(ξ)

ξ+ − ξ
.

Let X̂ besubsetof grid Ξ such that

X̂ : a = x̂0 < x̂1 < x̂2 < . . . < x̂
K̂

< x̂
K̂+1

= b.

Let

Ũ(t) = U(x̂j) +
U(x̂j+1)− U(x̂j)

x̂j+1 − x̂j
(t− x̂j)

∀t ∈ [x̂j , x̂j+1), j ∈ {0, 1, . . . , K̂}
be a piecewise linear interpolation of functionU(t),
defined on segment]a, b [.

It’s evident that

‖U(t)− Ũ(t)‖ ≤

≤ (x̂j+1 − x̂j) max
ξ∈ ]x̂j ,x̂−j+1 [

‖DΞU(ξ)‖, (21)

2Thefield of real numbers, the field of complex numbers and
the field of p-adic numbers are metrized fields (i.e. fields with
evaluation).

3The expression ”abstract function” is often replaced by the
word ”function”; that doesn’t lead to confusion because in all
cases when we discuss an abstract function with values in the
spaceM, we denote it with capital letter or semiboldface type.

4 On number of grid knots

4.1 A grid of adaptive type
Theorem 4 Suppose that

‖DΞU(t)‖ ≥ c > 0 ∀t ∈ Ξ. (22)

If η > 0, and grid X̂ coincides with grid
X̃(‖DΞU(t)‖, η,Ξ), then

1) the quantity of knots K ′
U,Ξ(η) =

K(‖DΞU(t)‖, η,Ξ) of the grid satisfy relations

K−1∑

s=0

max
t∈ ]x̃s, x̃s+1 [

‖DΞU(t)‖(x̃s+1 − x̃s)/η ≤

≤ K ′
U,Ξ(η) <

<
K−1∑

s=0

max
t∈ ]x̃s, x̃+

s+1 [
‖DΞU(t)‖(x̃+

s+1 − x̃s)/η, (23)

2) inequality

‖U(t)− Ũ(t)‖ ≤ η ∀t ∈ ]a, b, [ (24)

is true,
3) if there are sequences of grids (19) with con-

dition (20) andU ∈ C1
M[a, b], for which‖U ′(t)‖ ≥

c > 0 ∀t ∈ [a, b], then relation

lim
η ′→+0

lim
λ→+0

K ′
U,Ξ(λ)(η

′)η ′ =
∫ b

a
‖U ′(t)‖dt

(25)
is fulfilled.

Proof: Formula (23) follows from relation (8),
where it needs to putf(t) = ‖DΞU(t)‖. Under con-
dition (22) the inequality (24) follows from (3) and
(6), wheref(t) = ‖DΞU(t)‖, ε = η. Finally, for-
mula (25) follows from (23) by passing to the limit.

4.2 Pseudo-equidistant grid
Theorem 5 If grid X̂ coincides with grid
X(‖DΞU‖, η,Ξ), then

1) the numberN ′
U,Ξ(η) = N(‖DΞU‖, η,Ξ) of

inner knots of the grid satisfies the relation

(b− a)‖DΞU‖CM ]a,b [/η − 2 < N ′
U,Ξ(η) ≤

≤ (b− a)‖DΞU‖CM ]a,b [/η, (26)

2) inequality

‖U(t)− Ũ(t)‖ ≤ η ∀t ∈ ]a, b [ (27)

is right.

Proof: Considering gridX̂ = X(‖DΞU‖, η,Ξ),
we apply formula (2.2); as a result we get the relation
(26). The inequality (27) follows from relations (3)
and (2.2) iff(t) = ‖DΞU(t)‖ andε = η.
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4.3 Comparative characteristics of the
quantity of knots under the condition of
the same approximation

Theorem 6 Consider the family of grids (19) – (20).
Let U(t), t ∈ [a, b], be a continuously differentiable
function with property

‖U ′‖CM[a,b] 6= 0; (28)

then

lim
η→+0

lim
λ→+0

K ′
U,Ξ(η)

N ′
U,Ξ(η)

=
1

b−a

∫ b
a ‖U ′(t)‖dt

‖U ′‖CM[a,b]
. (29)

Proof: Underthe conditions of (28) we can dis-

cuss a ratio
K ′

U,Ξ(η)

N ′
U,Ξ(η) , taking into account relations

(23) – (24) and (26) – (27); the passing to the limit
gives the correlation (29).

5 Wavelet support

The construction of embedded grids and evaluation
of approximations we considered before. In this sec-
tion we suppose that embedded grids have been con-
structed; here we discuss calibration relations, which
are wavelet support in the next discussion.

5.1 Embedded grid
Let m be a natural number; by definition, put

Jm = {0, 1, . . . , m}, J ′
m = {−1, 0, 1, . . . ,m}.

Consider the functions{ωj(t)}j∈J ′M−1
as ele-

ments of the spaceC]a, b[ :

ωj(ξs) = δs,j+1, s ∈ JM .

Let g(i), i ∈ J ′
M−1 be the linear functionals defined

by relations

〈g(i), u〉 = u(ξi+1) ∀u ∈ C]a, b[. (30)

The system{ωj}j∈J ′M−1
is the basis of the space

C]a, b[; we have

〈g(i), ωj〉 = δi,j ∀ i, j ∈ J ′
M−1.

In further we discuss a set]c, d[ as an empty set
if c > d.

Suppose5 ≤ K < M . Consider an injective
mapκ of the setJK to the setJM such that

κ(0) = 0, κ(i) < κ(i + 1), κ(K) = M. (31)

Let J∗ ⊂ JM be the set defined by the formula

J∗ = κJK . (32)

In view of (31) – (32) the revised mapκ−1 defined on
the setJ∗ uniquely:∀r ∈ J∗ κ−1 : r −→ s, s ∈
JK , JK = κ−1J∗.

Let

X̂ : a = x̂0 < x̂1 < . . . < x̂K = b

be a new grid with knotŝxi = ξκ(i), i ∈ JK .
Sometimes we discuss additional knotsξ−1 and

x̂−1 with propertyξ−1 = x̂−1 < a.

5.2 Calibration relations
Consider functionŝωj(t), j ∈ J ′

K−1 defined by rela-
tions

ω̂i(t) = (t− ξκ(i))(ξκ(i+1) − ξκ(i))
−1

for t ∈]ξ +
κ(i), ξκ(i+1)[, i ∈ JK−1, (33)

ω̂i(t) = (ξκ(i+2) − t)(ξκ(i+2) − ξκ(i+1))
−1

for t ∈]ξκ(i+1), ξ
−
κ(i+2)[, i ∈ J ′

K−2; (34)

ω̂i(t) = 0 for t ∈]a, b[ \ ]ξ +
κ(i), ξ

−
κ(i+2)[. (35)

It is clear to see that

ω̂i(ξκ(i+1)) = 1 ∀i ∈ J ′
K−1. (36)

In the following we use the notation

supp ω̂i =]x̂i, x̂i+2[.

Splinesω̂i could be written as linear combina-
tions of splinesωj :

ω̂i(t) =
∑

j∈J ′M−1

pi,jωj(t) ∀t ∈]a, b[, i ∈ J ′
K−1;

(37)
formulas (37) are calledcalibration relations.

Applying the functionalsg(j) to (37) and taking
into account relations (30), we have

p−1,j = ω̂−1(ξj+1)

∀j ∈ {κ(0)− 1, κ(0), . . . , κ(1)− 2}, (38)

pi,j = ω̂i(ξj+1)

∀j ∈ {κ(i), . . . , κ(i + 2)− 2} ∀i ∈ JK−2, (39)

pK−1,j = ω̂K−1(ξj+1)

∀j ∈ {κ(K − 1), . . . , κ(K)− 1}; (40)

the numberspr,s, r ∈ J ′
K−1, s ∈ J ′

M−1, which are
absent in these formulas, are equal to zero.

Consider functionals

〈ĝ(i), u〉 = u(x̂i+1) ∀u ∈ C]a, b[, i ∈ J ′
K−1. (41)
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5.3 Matrix of restriction
Discuss matrixP = (pi,j)i∈J ′K−1,j∈J ′M−1

; here

pi,j = 〈g(j), ω̂i〉. The matrixP is called a restriction
matrix. We introduce the ascending ordered subsets
of setZ:

J0 = {−1, . . . , κ(1)− 2},
J1(r) = {κ(r), . . . , κ(r + 1)− 1} ∀r ∈ JK−1,

J2(r) = {κ(r+1), . . . , κ(r+2)−2} ∀r ∈ JK−2,

J(r) = J1(r)
⋃

J2(r) ∀r ∈ JK−2,

J(K − 1) = J1(K − 1).
The ascending ordered set will be discussed as empty
if its first element is more then last one.

Theorem 7 The calibration relations

ω̂r(t) =
∑

q∈J ′M−1

pr,qωq(t) ∀t ∈]a, b[, r ∈ J ′
K−1,

(42)
are right; here

p−1,q =
ξκ(1) − ξq+1

ξκ(1) − ξκ(0)
q ∈ J0, (43)

pr,q =
ξq+1 − ξκ(r)

ξκ(r+1) − ξκ(r)

q ∈ J1(r), r ∈ JK−1, (44)

pr,q =
ξκ(r+2) − ξq+1

ξκ(r+2) − ξκ(r+1)

q ∈ J2(r), r ∈ JK−2, (45)

with elementspr,q unmentioned in formulas (43) – (7)
equal to zero.

Proof. First of all we note that relations (7) and
(7) aren’t converse to each other, because for datar
the setsJ1(r) andJ2(r) aren’t intersects. It’s clear
to see that formulas (42) – (7) follow from relations
(38) – (40) by correlations (33) – (36).

5.4 Matrix of prolongation
Consider matrixQ = (qs,j)s∈J ′K−1, j∈J ′M−1

with el-
ements

qs,j = 〈ĝ(s), ωj〉; (46)

the matrixQ is calledthe matrix of prolongation.
Taking into account the formulas (41), (46), we

obtain the next assertions (see also [20]).

Theorem 8 In the matrixQ
1) if j + 1 /∈ J∗, then the columnq(j) =

(qsj)s∈J ′K−1
is zero column;

2) if j + 1 ∈ J∗, then the columnq(j) contains
the unit on thes0-th place, whereκ(s0 + 1) = j + 1;
the other elements of the column are equal to zero.

6 General flows and their recon-
struction

Consider linear spaces

S = S(X,ϕ,M) = {u | u(t) =

=
∑

j∈J ′M−1

Cjωj(t) ∀Cs ∈M ∀j ∈ J ′M−1, t ∈]a, b[},

Ŝ = S(X̂, ϕ,M) = {u | u(t) =

=
∑

i∈J ′K−1

Aiω̂i(t) ∀As ∈M ∀s ∈ J ′K−1, t ∈]a, b[}.

Taking into account the calibration relations (42), we
haveŜ ⊂ S ⊂ CM]a,b[.

Suppose there is the next equivalence
∑

j∈J ′M−1

Cjωj(t) ≡ 0 ∀t ∈]a, b[ ⇐⇒

⇐⇒ Cj = 0 ∀j ∈ J ′M−1. (47)

If (47) is fulfilled then we say thatthe system
{ωj}j∈J ′M−1

is linear independent over the spaceS.
LetP be an operation of projection for the space

S on the spacêS defined by formula

Pu =
∑

s∈J ′K−1

∑

j∈J ′M−1

Cj〈ĝ(s), ωj〉ω̂s

∀u =
∑

j∈J ′M−1

Cjωj ∈ S. (48)

By definition, put

〈ĝ(s),u〉 =
∑

j∈J ′M−1

Cj〈ĝ(s), ωj〉;

by (48) we have

Pu(t) = 〈ĝ(k−1),u〉ω̂k−1(t) + 〈ĝ(k),u〉ω̂k(t)

∀t ∈ t ∈]x̂k, x̂k+1[, k ∈ JK−1.

The operationP defines wavelet decomposition

S = S +W (49)

of spaceS, which is namedthe initial space, on space
Ŝ (the last one is namedthe main space) and space
W, which is namedthe wavelet space.

LetC = (C−1,C0,C1, . . . ,CM−1)T be the ini-
tial flow of elements from spaceM. By definition,
put

u =
∑

s∈J ′M−1

Csωs. (50)
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Usingtherelation (49), we get the second repre-
sentation of the elementu:

u = û + w, (51)

where

û =
∑

i∈J ′K−1

Aiω̂i, w =
∑

j∈J ′M−1

Bjωj ,

Bj , Cs ∈M ∀j, s ∈ J ′
M−1,

Ai = 〈ĝ(i),u〉 ∀i ∈ J ′
K−1. (52)

By (50) – (51) we have
∑

j∈J ′M−1

Cjωj =
∑

i∈J ′K−1

Ai

∑

j∈J ′M−1

pi,jωj+

+
∑

j∈J ′M−1

Bjωj ,

whence taking into account the linear independence
of the system{ωj}j∈J ′M−1

over the spaceS, we get
the formulas of reconstruction

Cj =
∑

i∈J ′K−1

pi,jAi + Bj ∀j ∈ J ′
M−1. (53)

7 Formulas of decomposition

Using the representation (52), we rewrite formulas
(53) in the form

Cj =
∑

i∈J ′K−1

〈ĝ(i),u〉pi,j + Bj ∀j ∈ J ′
M−1

and taking into account (50), we have

Cj =
∑

i∈J ′K−1

∑

s∈J ′M−1

Cs〈ĝ(i), ωs〉pi,j + Bj

∀j ∈ J ′
M−1;

now we get

Bj = Cj −
∑

s∈J ′M−1

( ∑

i∈J ′K−1

qi,spi,j

)
Cs. (54)

Substituting (50) in (52), we have

Ai = 〈ĝ(i),
∑

s∈J ′M−1

Csωs〉 ∀i ∈ J ′
K−1;

therefore

Ai =
∑

s∈J ′M−1

qi,sCs ∀i ∈ J ′
K−1. (55)

The formulas (54) – (55) are calledthe formulas of
decomposition.

Using the vectors

A = (A−1,A0, . . . ,AK−1)T ,

B = (B−1,B0, . . . ,BM−1)T ,

we rewrite formulas (53) and (54) – (55) in matrix
form: the formulas of decomposition (54) – (55) take
the form

A = QC, B = C− P T QC,

and the formulas of reconstruction (53) are repre-
sented as

C = P TA + B.

Using obtained assertions (see Theorems 7 and
8) for the elements of matricesP andQ, we get the
following propositions.

Theorem 9 The formulas of decomposition have the
following properties

Ai = Cκ(i+1)−1 ∀i ∈ J ′
K−1, (56)

Bq = 0 ∀q + 1 ∈ J∗, (57)

Bq = Cq −
∑

j∈J ′K−1

〈g(q), ω̂j〉Cκ(j+1)−1

∀q + 1 ∈ JM\J∗. (58)

Theorem 10 The wavelet flow satisfies the next re-
lations: for q + 1 ∈ JM\J∗ the equalities

Bq = Cq − (x̂i+1 − x̂i)−1
[
(x̂i+1 − ξq+1)Cκ(i)−1+

+(ξq+1 − x̂i)Cκ(i+1)−1

]

are fulfilled; here

x̂i < ξq+1 < x̂i+1. (59)

The formula (58) can be written in the form

Bq = Cq − pi−1,qCκ(i)−1 − pi,qCκ(i+1)−1,

wherei satisfies to relation (59).
The formulas (57) – (58) demonstrate that the

space of wavelet flowsB is

B = {B | B = (B−1,B0, . . . ,BM−1)

∀Bj−1 ∈M, j ∈ JM\J∗;B i−1 = 0 ∀i ∈ J∗}.
The relation (56) indicates that the construction

of the main flow is reduced to values of initial flow
on the embedded grid. If the embedded grid is adap-
tive, then the deviation of the main flow from the
initial flow is defined by Theorem 4, and if the con-
structed grid is the pseudo-equidistant grid, then the
mentioned deviation is given by Theorem 5.
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8 Conclusion
Theresults give us the opportunity to obtain the main
flow in wavelet decomposition for flows of elements
from linear normed spaces; sometimes it is very im-
portant to have decomposition of flows of matrices
or flows of p-adic numbers. The results also demon-
strate a large economy of computer memory in the
case of usage of adaptive algorithms for construction
of the main flow. Now it is simple to obtain formu-
las of decomposition and reconstruction; we hope to
represent the application of them to flow of matrices
in an extended version of this paper.
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